Trazado de polígonos regulares

Páxina principal

Cadrado dado o lado base.
Método clásico 2

Sección de Xeometría

 

Polígonos dado o raio   Polígonos dado o lado

Triángulo equilátero
Cadrado
Pentágono
Hexágono
Heptágono -CL-
Heptágono -Alt1-
Heptágono -Alt2-
Octógono
Eneágono -CL-
Eneágono -Alt1-
Eneágono -Alt2-
Decágono 1
Decágono 2
Endecágono -CL-
Endecágono -Alt1-
Endecágono -Alt2-
Dodecágono -CL-
Tridecágono -Alt1-
Tridecágono -Alt2-
Tetradecágono -CL-
Tetradecágono -Alt1-
Tetradecágono -Alt2-
Pentadecágono -CL-
Hexadecágono -CL-
Heptadecágono -Alt1-
Heptadecágono -Alt2-
Octodecágono -CL-
Octodecágono -Alt1-
Octodecágono -Alt2-
Nonadecágono -Alt1-
Nonadecágono -Alt2-
Icoságono -CL-

Este es un Applet de Java creado con GeoGebra desde www.geogebra.org – Java no parece estar instalado Java en el equipo. Se aconseja dirigirse a www.java.com

Triángulo equilátero
Cadrado 1
Cadrado 2
Pentágono
Hexágono
Heptágono -CL-
Heptágono -Alt1-
Heptágono -Alt2-
Octógono
Eneágono -CL-
Eneágono -Alt1-
Eneágono -Alt2-
Decágono
Endecágono -Alt1-
Endecágono -Alt2-
Dodecágono -CL-
Tridecágono -Alt1-
Tridecágono -Alt2-
Tetradecágono -Alt1-
Tetradecágono -Alt2-
Pentadecágono -Alt-
Hexadecágono -CL-
Heptadecágono -Alt1-
Heptadecágono -Alt2-
Octodecágono -CL-
Octodecágono -Alt1-
Octodecágono -Alt2-
Nonadecágono -Alt1-
Nonadecágono -Alt2-
Icoságono -CL-

Trácense dous arcos de centros A e B e raio a distancia AB. Trácese outro de igual raio e centro o punto de corte dos anteriores, que cortará o arco de centro B nun novo punto que permite trazar unha semirrecta en A cun ángulo de 15º respecto da base. A semirrecta cortará o arco de centro A no punto E, que será o centro doutro arco de igual raio que volve cortar o de centro A no punto D. Con centro en D e igual raio localízase o último vértice C no arco de centro B.

Método exacto.

 

 

   
Arriba